Deep Learning and Model Predictive Control for Self-Tuning Mode-Locked Lasers
نویسندگان
چکیده
Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require intelligent algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a deep learning (DL) architecture with model predictive control (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers. © 2017
منابع مشابه
Monolithically integrated 40GHz pulse source with >40nm wavelength tuning range
A monolithically integrated device combines 40 GHz dual mode-locked operation with the wide tuning range (>40nm) of sampled-grating DBR lasers, while further being integrated to an SOA and a potentially high-speed modulator. OCIS codes: (250.5300) Photonic integrated devices; (140.3600) Lasers, tunable; (140.4050) Mode-locked lasers
متن کاملSelf-starting of passively mode-locked lasers with fast saturable absorbers.
Self-starting of passively mode-locked lasers with fast saturable absorption is studied. Our basic assumption is that the lasers will self-start when cw operation is unstable and mode-locked operation is stable. We start with a standard model, closely related to the Ginzburg–Landau equation, that is valid when the change in the time variation of the laser light during one round trip through the...
متن کاملOptimum stabilization of self-mode-locked quantum dash lasers using dual optical feedback with improved tolerance against phase delay mismatch.
We experimentally investigate the RF linewidth and timing jitter over a wide range of delay tuning in a self-mode-locked two-section quantum dash lasers emitting at ~ 1.55μm and operating at ~ 21 GHz repetition rate subject to single and dual optical feedback into gain section. Various feedback conditions are investigated and optimum levels determined for narrowest linewidth and reduced timing ...
متن کاملAdaptive Simplified Model Predictive Control with Tuning Considerations
Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...
متن کاملAdaptive Tuning of Model Predictive Control Parameters based on Analytical Results
In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.02702 شماره
صفحات -
تاریخ انتشار 2017